
INFORMATION ON MODBUS
22.04.2021
Page 1/2

Guideline for Modbus

...we solve. www.solvimus.de

Modbus is a communication protocol and is considered
a quasi-standard in automation technology. It is based
on binary data notation and uses a master-slave
mechanism (client-server architecture). The principle of
data transmission applied for this is simple: Address,
instruction code, length specification, data content, and
checksum are forming make up the packets. This
principle can be used universally and explains why
Modbus is very widely used.

But why do discrepancies come up in relation with
Modbus communication time and again?

The beginning is the end

No, we are not kidding. It is the most important fact to
consider: the order of the data bits and bytes. We are
talking about "endianness" or "byte order“.

Precisely, because it is such a simple and universal
protocol, using Modbus requires dealing with many
different computer and memory architectures. This is
where endianness comes into play.

Modbus uses 16-bit registers for data exchange. So the
smallest unit has a size of 16 bits or, correspondingly, 2
bytes in this case. Accordingly, 8-bit architectures are
using two memory units for each value. At this point,
the question of sequence is raised for the first time.

When two parts of a value are combined to obtain a
total value, like combining two 8-bit values to one 16-
bit value in this case, you have to start thinking about
their order. For example, let us take a value of 4660 (or
0x1234 in hexadecimal terms). This 16-bit value consists
of two 8-bit parts 0x12 and 0x34. But, they may be
stored in the memory like this:

Memory address Big-Endian Little-Endian

1 0x12 0x34

2 0x34 0x12

In this case, big-endian indicates that the part with the
most significant value is at the lowest memory address
which means that the presentation is following the
common and classical Arabic numeral notation. The
digits written first (e.g. thousands) have a higher
significance than those at the (e.g. unit digits).

Little-endian means that the least-significant part is
found at the lowest memory address. This contradicts
classical Arabic numerical notation, and rather follows
the sequence of processing which is used in
computation, i.e. you start at the unit position just like
column addition. This can bring advantages in

arithmetic terms, and is used for this reason in every
x86-compatible computer architecture, i.e. also in your
PC.

Date and time of day are often mentioned as an
analogy. In German-speaking countries, the little-
endian, i.e. the least significant value, appears first when
indicating a date: 01.02.2003. But the time of day is big-
endian: 12:34.

This is relevant for the Modbus since serial
communication with an 8-bit data width is used almost
in every case. Even for Modbus TCP, data is arranged
just like in serial communication.

Supposedly, it is to ensure readability in data streams, or
also because of the architecture of earlier PLC, that
Modbus applies a big-endian notation. This means that
the byte with the highest significance is transmitted
first: First comes 0x12 and then 0x34. When Modbus
encounters a typical x86 architecture on a PC, a conflict
arises as this architecture has 0x34 at the first position in
the memory or wants to write it first to the memory. So
this must be turned around or swapped.

In case of 16-bit values, you must consider or swap the
order of single bytes. When you go to a higher value
range like 32-bit values or even 64-bit-values, this
variability becomes exponential. But you will not find
every combination as architectures will normally
remain faithful to their endianness.

Let us mention a specific example: Take the number of
305419896 or 0x12345678 in hexadecimal notation. In
this case, the byte order may look like this:

Order Modbus Big-
Endian*

Big-Mix* Little-
Mix*

Little-
Endian

1st 0x12 0x12 0x34 0x56 0x78

2nd 0x34 0x34 0x12 0x78 0x56

3rd 0x56 0x56 0x78 0x12 0x34

4th 0x78 0x78 0x56 0x34 0x12

*Fancy names

So it can quickly happen that a software on a PLC or on
a PC does not transmit a number as 0x12, 0x34, 0x56,
0x78 in Modbus but rather as 0x78, 0x56, 0x34, 0x12
(2018915346 decimally), or even in one of the mixed
forms if proper care is not taken or for lack of true
competence. To deal with this, it is good when you have
the possibility to swap bytes, at least to switch from big
to little endianess.

In our modern Modbus devices, you can change
swapping from big-endian to little-endian. The

INFORMATION TO MODBUS
22.04.2021
Page 2/2

...we solve. www.solvimus.de

"Modbus swap" switch is used for doing this. When it is
activated, little-endian notation will be applied.

As the saying goes: This was the first trick. The second
one will follow right away ... The second part of our
Modbus guideline will show how to properly address
registers or storage positions.

In the first part of this blog post about the Modbus
communications protocol, we have had a look at
endianness, i.e., at the sequence of data representation.
Now we would like to describe the proper addressing of
registers.

Everything to 0?

Another pitfall to avoid in Modbus is to address registers
or, respectively, storage locations in a wrong way. These
have already appeared in the tables above: 1st, 2nd, 3rd,
4th. The first value is written to line 1 or to address 1. But
this would be wrong when speaking "Modbusian"
terms. As it is a binary protocol, logical counting starts at
zero in the Modbus world. Accordingly, the first value is
written to the register at address 0.

So, when you want to query the first value or,
correspondingly, the first register, you have to use
address 0. This is easy to do on a binary level. But now
the human factor comes into play as the first value
would be number 1 to our minds. For this reason, many
Modbus components use a human way of addressing,
and start counting at 1.

To make things even more confusing, this 1 will,
nonetheless, automatically turn into a 0 at the Modbus
interface and the counterpart will then respond with a
0, too.

To avoid this problem, the same way of counting must
be used on both sides.

In our devices, we follow Modbus, and use a counter
which starts at 0. Accordingly, the first 10 registers have
addresses 0 to 9, for example. We do not allow any shift
by +1.

If the remote station starts counting at 1, you will then
have to increase every address by 1 contrary to the
notation used in our devices.

How can you find out about this?

To specifically take care of these two aspects, we have
integrated a so-called test mode in our devices:

This test mode activates a static response data record
which can be used for testing a remote station.
Endianness and counting method will not coincide
unless the numbers exactly correspond to the
specifications as described in our manual.

If your remote station supports Float32 as a data format,
we always recommend to refer to registers 24 and 25 for
testing.

If the number at your remote station does not
correspond exactly to 1234.5677490234375 (yes, minor
deviations may occur in Float32) something is wrong. If
you see a value of 237810783920322510848, for
instance, you would be reading out registers 23 and 24,
which would indicate a counting method starting at 1.

To check Float32 values you can use the following page
among others: https://www.h-
schmidt.net/FloatConverter/IEEE754.html

https://www.h-schmidt.net/FloatConverter/IEEE754.html
https://www.h-schmidt.net/FloatConverter/IEEE754.html

